BEGIN:VCALENDAR PRODID:-//Microsoft Corporation//Outlook MIMEDIR//EN VERSION:1.0 BEGIN:VEVENT DTSTART:20111116T221500Z DTEND:20111116T230000Z LOCATION:TCC LL4/LL5 DESCRIPTION;ENCODING=QUOTED-PRINTABLE:ABSTRACT: Interfacing atomistic-based with continuum-based simulation codes is now required in many multiscale physical and biological systems. We present the computational advances that have enabled the first multiscale simulation on 190,740 processors by coupling a high-order (spectral element) Navier-Stokes solver with a stochastic=0A(coarse-grained) Molecular Dynamics solver based on Dissipative Particle Dynamics (DPD). The key contributions are proper interface conditions for overlapped domains, topology-aware communication, SIMDization, multiscale=0Avisualization and a new domain partitioning for atomistic solvers. We study blood flow in a patient-specific cerebrovasculature with a brain aneurysm, and analyze the interaction of blood cells with the arterial walls endowed with a glycocalyx causing thrombus formation and eventual aneurysm rupture. The macro-scale dynamics (about 3 billion unknowns) are resolved by Nektar - a spectral element solver; the micro-scale flow and cell dynamics within the aneurysm are resolved by an in-house version of DPD-LAMMPS (for an equivalent of about 100=0Abillions molecules). SUMMARY:A new Computational Paradigm in Multiscale Simulations: Application to Brain Blood Flow PRIORITY:3 END:VEVENT END:VCALENDAR