When viewing the Technical Program schedule, on the far righthand side
is a column labeled "PLANNER." Use this planner to build your own
schedule. Once you select an event and want to add it to your personal
schedule, just click on the calendar icon of your choice (outlook
calendar, ical calendar or google calendar) and that event will be
stored there. As you select events in this manner, you will have your
own schedule to guide you through the week.
You can also create your personal schedule on the SC11 app (Boopsie) on your smartphone. Simply select a session you want to attend and "add" it to your plan. Continue in this manner until you have created your own personal schedule. All your events will appear under "My Event Planner" on your smartphone.
Evaluating the Viability of Process Replication Reliability for Exascale Systems
SESSION: Reliability
EVENT TYPE: Paper
TIME: 1:30PM - 2:00PM
AUTHOR(S):Kurt, B. Ferreira, Rolf Riesen, Patrick Bridges, Dorian Arnold, Jon Stearley, James H. Laros, Ron A. Oldfield, Kevin Pedretti, Ron Brightwell
ROOM:TCC 304
ABSTRACT: As high-end computing machines continue to grow in size, issues such as fault tolerance and reliability limit application scalability. Current techniques to ensure progress across faults, like checkpoint-restart, are increasingly problematic at these scales due to excessive overheads predicted to more than double an applications time to solution. Replicated computing techniques, particularly state machine replication, long used in distributed and mission critical systems, has been suggested as an alternative to checkpoint-restart. In this paper, we evaluate the viability of
using state machine replication as the primary fault tolerance mechanism for upcoming exascale systems. We use a combination of modeling, empirical analysis, and simulation to study the costs and benefits of this approach in comparison to checkpoint/restart on a wide range of system parameters. These results, which cover different failure distributions, hardware mean time to failures, and I/O bandwidths, show that state machine replication is a potentially useful technique for meeting the fault tolerance demands of HPC applications on future exascale platforms.