SC is the International Conference for
High Performance Computing, Networking,
Storage and Analysis

SCHEDULE: NOV 12-18, 2011

When viewing the Technical Program schedule, on the far righthand side is a column labeled "PLANNER." Use this planner to build your own schedule. Once you select an event and want to add it to your personal schedule, just click on the calendar icon of your choice (outlook calendar, ical calendar or google calendar) and that event will be stored there. As you select events in this manner, you will have your own schedule to guide you through the week.

You can also create your personal schedule on the SC11 app (Boopsie) on your smartphone. Simply select a session you want to attend and "add" it to your plan. Continue in this manner until you have created your own personal schedule. All your events will appear under "My Event Planner" on your smartphone.

CudaDMA: Optimizing GPU Memory Bandwidth via Warp Specialization

SESSION: GPU Optimizations


TIME: 10:30AM - 11:00AM

AUTHOR(S):Michael Bauer, Henry Cook, Brucek Khailany


As the computational power of GPUs continues to scale with Moore's Law, an increasing number of applications are becoming limited by memory bandwidth. We propose an approach for programming GPUs with tightly-coupled specialized DMA warps for performing memory transfers between on-chip and off-chip memories. Separate DMA warps improve memory bandwidth utilization by better exploiting available memory-level parallelism and by leveraging efficient inter-warp producer-consumer synchronization mechanisms. DMA warps also improve programmer productivity by decoupling the need for thread array shapes to match data layout. To illustrate the benefits of this approach, we present an extensible API, CudaDMA, that encapsulates synchronization and common sequential and strided data transfer patterns. Using CudaDMA, we demonstrate speedup of up to 1.37x on representative synthetic micro-benchmarks, and 1.15x-3.2x on several kernels from scientific applications written in CUDA running on NVIDIA Fermi GPUs.

Chair/Author Details:

Michael Bauer - Stanford University

Henry Cook - University of California, Berkeley

Brucek Khailany - NVIDIA

Add to iCal  Click here to download .ics calendar file

Add to Outlook  Click here to download .vcs calendar file

Add to Google Calendarss  Click here to add event to your Google Calendar

The full paper can be found in the ACM Digital Library

   Sponsors    ACM    IEEE