SC is the International Conference for
High Performance Computing, Networking,
Storage and Analysis



SCHEDULE: NOV 12-18, 2011

When viewing the Technical Program schedule, on the far righthand side is a column labeled "PLANNER." Use this planner to build your own schedule. Once you select an event and want to add it to your personal schedule, just click on the calendar icon of your choice (outlook calendar, ical calendar or google calendar) and that event will be stored there. As you select events in this manner, you will have your own schedule to guide you through the week.

You can also create your personal schedule on the SC11 app (Boopsie) on your smartphone. Simply select a session you want to attend and "add" it to your plan. Continue in this manner until you have created your own personal schedule. All your events will appear under "My Event Planner" on your smartphone.

Physis: An Implicitly Parallel Programming Model for Stencil Computations on Large-Scale GPU-Accelerated Supercomputers

SESSION: Domain Specific Languages

EVENT TYPE: Paper

TIME: 11:30AM - 12:00PM

AUTHOR(S):Naoya Maruyama, Tatsuo Nomura, Kento Sato, Satoshi Matsuoka

ROOM:TCC 304

ABSTRACT:
This paper proposes a compiler-based programming framework that automatically translates user-written structured grid code into scalable parallel implementation code for GPU-equipped clusters. To enable such automatic translations, we design a small set of declarative constructs that allow the user to express stencil computations in a portable and implicitly parallel manner. Our framework translates the user-written code into actual implementation code in CUDA for GPU acceleration and MPI for node-level parallelization with automatic optimizations such as computation and communication overlapping. We demonstrate the feasibility of such automatic translations by implementing several structured grid applications in our framework. Experimental results on the TSUBAME2.0 GPU-based supercomputer show that the performance is comparable as hand-written code and good strong and weak scalability up to 256 GPUs.

Chair/Author Details:

Naoya Maruyama - Tokyo Institute of Technology

Tatsuo Nomura - Google, Inc.

Kento Sato - Tokyo Institute of Technology

Satoshi Matsuoka - Tokyo Institute of Technology

Add to iCal  Click here to download .ics calendar file

Add to Outlook  Click here to download .vcs calendar file

Add to Google Calendarss  Click here to add event to your Google Calendar

The full paper can be found in the ACM Digital Library

   Sponsors    ACM    IEEE